
Journal of Intelligent & Fuzzy Systems 22 (2011) 83–92
DOI:10.3233/IFS-2011-0478
IOS Press

83

Correlation analysis and performance
evaluation of distance measures for
evolutionary neural networks

Kyung-Joong Kima, Jung Guk Parka and Sung-Bae Chob,∗
aDepartment of Computer Engineering, Sejong University, Seoul, South Korea
bDepartment of Computer Science, Yonsei University, Seoul, South Korea

Abstract. In a genetic algorithm, the search process maintains multiple solutions and their interactions are important to accelerate
the evolution. If the pool of solutions is dominated by the single fittest individual in the early generation, there is a risk of premature
convergence losing exploration capability. It is necessary to consider not only the fitness of solutions but also the similarity to
other individuals. This speciation idea is beneficial to several application domains with evolutionary computation but it requires
objective distance measures to calculate the similarity of individuals. It raises a challenging research issue to measure the distance
between two evolutionary neural networks (ENN). In this paper, we surveyed several distance measures proposed for ENN and
compared their performance for pattern classification problems with two different genetic representations (matrix-based and
topology growing (NEAT) approaches). Although there was no dominant distance measure for the pattern classification problems,
it showed that the behavioral distance measures outperformed the architectural one for matrix-based representation and. For NEAT,
NeuroEdit showed better accuracy against compatibility distance measure.

Keywords: Speciation, premature convergence, distance measures, evolutionary neural networks, pattern classification, NEAT

1. Introduction

Evolutionary neural networks (ENN) exploit evolu-
tionary computation to design the topology and weights
of artificial neural networks automatically [19]. Usu-
ally, the topology of neural networks is designed by
experts and the weights of the fixed structure are trained
with gradient-descent learning algorithms [5]. Design-
ing the topology is not a trivial task and the error
function of the learning algorithm has to be differen-
tiable. In addition to those limitations, the local search
is likely to be trapped into local optima. The evolu-

∗Corresponding author. E-mail: kimkj@sejong.ac.kr (K.-J.
Kim), sbcho@cs.yonsei.ac.kr (S.-B. Cho).

tionary computation (EC) is a population-based search
maintaining multiple solutions simultaneously without
the restriction of differentiable error equations [4]. ENN
adopts the EC to optimize the topology and weights of
neural networks at the same time.

Although EC is strong for global search, its popu-
lation can be dominated by premature solutions in the
early generation and need speciation to avoid it [12].
Because the EC gives high selection pressure to the
individuals with high fitness, the population can lose its
diversity in the early generation due to the premature
solutions. This leads to the invention of speciation
algorithms which modify the selection pressure of
individuals based on the similarity to others [11]. If
there are many similar individuals in the population, its

1064-1246/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved

mailto:kimkj@sejong.ac.kr
mailto:sbcho@cs.yonsei.ac.kr

84 K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures

fitness is divided by the number of similar individuals.
In this way, less fitted solutions can survive to the
next generation increasing the genetic diversity of
population.

Speciation has been successfully used in evolving
neural networks to generate multiple diverse solutions
avoiding local optima [9, 10, 17], but there is no consen-
sus on the distance measures for the speciation of ENN.
In the speciation, we need to determine the distance
measure between two evolutionary neural networks but
it is not a trivial problem. First of all, it is not easy to
define the distance measures because there is little work
on the definition of distance between neural networks.
And also, there is no way to evaluate the goodness of
the distance measures in a direct manner. Instead, it is
just possible to see the effect of measures indirectly
from the performance of ENN systems for the specific
problems.

In a broad manner, there are two categories of dis-
tance measures for ENN: architectural (topology +
weight) and behavioral distance measures. In the
architectural measures, they calculates the similarity
between two ENNs based on architectural differences
(topological and weight difference). If two neural net-
works have the same architecture, their distance is 0. On
the other hands, in behavioral measures, they consider
only the outcome of the neural networks to calculate
the distances. If two neural networks output the same
outcome to input data although they have different
architectures, their distance is 0.

As mentioned before, the comparison of distance
measures is only possible indirectly based on the per-
formance of ENN systems for specific problems and
we adopted speciation-based ENN pattern classifica-
tion systems. Pattern classification is one of the popular
research areas of evolutionary neural networks and
there are a lot of benchmarking datasets from UCI
machine learning repository [2]. Also, there are several
research works on exploiting speciation with evolu-
tionary neural networks for pattern classification [1, 7,
10, 13]. Although there are several interesting problem
domains for ENN, the pattern classification can be a
starting position of further investigation.

In this paper, we surveyed several distance measures
from literatures and compared their performance for
pattern classification problems with two different
neural network representations (matrix-based and
topology growing approaches). In the matrix-based
representation [10], the architecture of neural network
is encoded directly in the matrix as entry values.
Half of the matrix represents the topology and the

remaining parts contain information on weights. There
are several works on speciation with the matrix-based
representation [1, 7, 10]. On the other hands, there are
another popular ENN representations called as NEAT
(NeuroEvolution of Augmenting Topologies) which
grows its topology from minimal structure to complex
one [17]. It adopts fitness sharing, one of the widely
used speciation algorithms, to avoid local optimum and
needs distance measures between two neural networks.
For the two representations, we tested the accuracy of
the evolved neural classifiers for pattern classification
problems with different distance measures. In this
way, we attempted to evaluate the distance measures
for pattern classification problems with different
representations.

2. Distance measures for evolutionary neural
networks

Although there are several works on using the
distance measures for traditional neural networks (not
ENN), the distance measures have been mainly
used for evolutionary neural networks. If it is not
an ENN and the two neural networks have different
topology, it is not trivial to map hidden neurons in
on networks to one of another network. Fortunately,
in ENN, there is an ID for each hidden neuron and
it is possible to directly compare the hidden neurons
in two different neural networks. In this reason, the
distance measures have been widely used for the ENN.
In Table 1, there is a summary of distance measures
for ENN.

For the matrix-based representation, the outcome of
neural networks is mainly used to measure the distance
of two ENNs. In [1], authors proposed average out-
put, Pearson correlation and modified Kullback-Leibler
(KL) entropy methods to calculate the difference of out-
put neuron’s outcomes. They tested their methods for
three representative pattern classification problems and
reported that the KL entropy slightly outperforms other
two alternatives. Their methods have been used in other
works [7, 10].

For NEAT [17], the genome is composed of two parts
(node genes, connection genes). The connection gene
has in-node ID, out-node ID, weight, enable/disable,
and an original historical ancestor of each gene. In this
case, the distance is calculated with a simple linear com-
bination of the matching and mismatching information.
Their distance measure is called as compatibility. In
[13, 14], the authors use the same representation except

K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures 85

Table 1
Summary of distance measures for evolutionary neural networks

Distance types Authors Distance measures Contexts

Architectural
distance

Kim et al. [9] Euclidean distance Deterministic crowding GA

Stanley et al. [17] Linear equation Fitness sharing
Jung et al. [6] Euclidean distance Replacement in a genetic algorithm
Sallam et al. [13, 14] Neuro-Edit Fitness sharing, diversity analysis

Behavioral
distance

Kim et al. [10] Average output, Pearson correlation,
Kullback-Leibler entropy

Fitness sharing

Khare et al. [7] Kullback-Leibler entropy Fitness sharing
Garcia-Pedrajas et al. [3] Euclidean distance Fitness sharing
Trujillo et al. [18] Edit distance Fitness sharing

the historical information. The connection gene does
not contain information about its ancestor in general,
but a globally unique “innovation number” assigned
when the gene first arose by mutation. They modified
Edit Distance for the NEAT representation and the new
distance measure is called as NeuroEdit. Unlike the
previous two works, Trujillo et al. used the difference
of actual trajectories by robot’s neural controllers to
calculate the similarity of ENNs [18].

In [6], a new distance measure is proposed with
the consideration of redundancy in representation. Any
permutation of the hidden neurons produces the same
neural network with a different chromosome represen-
tation. N! different representations exist for a network
with n hidden neurons. In their work, they consider all
permutations in calculating distances of two neural net-
works. This is computationally expensive because N!
combinations are checked.

Kim et al. [8] reported the performance evaluation of
matrix-based representation with speciation for pattern
classification problems. In their work, they averaged
the classification accuracy for several datasets to get the
rank of the distance measures. In their conclusion, the
behavioral distance outperforms the architectural one
and the one with much information about the outputs
from output neurons and hidden neurons performs the
best. However, they only considered the matrix-based
representations and all datasets have relatively small
number of classes (for example, 2–3 classes).

3. Methods

The purpose of this research is to review a set of
distance measures published in literatures and evaluate
their performance on different settings (representa-
tions) (Table 2). From our survey, we found that there
are six distance measures for the matrix-based repre-
sentations and two distance measures for NEAT. For
the matrix-based representation, Average Output and
Kullback-Leibler Entropy were proposed in [1]. There
are four new measures proposed recently by authors
[8]: Euclidean Distance, Hamming Distance, Euclidean
Output, and Total Euclidean Output. For NEAT, the
original distance measure is compatibility proposed by
[17] and there is a new measure recently proposed by
[13, 14].

Although there are a lot of speciation methods [11,
15], the most widely used methods are fitness sharing
and deterministic crowding genetic algorithm. Fitness
sharing readjusts the fitness of individuals based on
the population density near the individual. The amount
of fitness reduction is proportionate to the number of
individuals within sharing radius. On the other hands,
the deterministic crowding GA has different selection
strategy without changing the fitness value. Instead of
readjusting the fitness value, the method chooses the
fittest one among two similar individuals (usually, a
pair of children and parents). In this way, it can reduce
the similarity among the individuals of the population.

Table 2
Summary of representations, speciation algorithms, and distance measures for ENN

Representation Speciation Distance measures

Matrix-based
representation

Fitness sharing,
Deterministic
crowding GA

Architectural distance measures Euclidean distance, Hamming distance
Behavioral distance measures Euclidean output total euclidean output

average output, Kullback Liebler entropy
NEAT Fitness sharing Architectural distance measures Compatibility, NeuroEdit

86 K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures

The representation of evolutionary neural networks
has big impact on the performance of ENN systems and
the design of genetic operators (crossover and muta-
tions). The matrix-based representation is a kind of
direct encoding scheme and easy to implement. It starts
from fully connected networks and applies the genetic
operators like crossover and mutations (addition and
deletion of arcs). In NEAT, it uses a flexible representa-
tion which allows continuous growth of the networks.
It starts from the minimal structure and adds additional
elements to the original networks.

3.1. Representations

3.1.1. Matrix-based representation
A matrix representation to encode the ANN is

straightforward to implement and easy to apply the
genetic operators [10]. When N is the total number of
nodes in the ANN (including the input, hidden, and out-
put nodes), the matrix is N × N whose entries consist
of connection links and the corresponding weights. In
this model, each ANN uses only forward links. In the
matrix, the upper right triangle (see Fig. 1) has connec-
tion link information where ‘1’ means that there is a
connection link and ‘0’ means that there is no connec-
tion link. The lower left triangle describes the weight
values corresponding to the connection link informa-
tion. The number of hidden nodes can vary within the
maximum number of hidden nodes in the course of the
GA operations.

There are two different genetic operators (crossover
and mutation) used in the matrix-based evolutionary
neural networks. The crossover operator exchanges the
architectures of two ANN’s in the population to search
the ANN’s from various architectures. In a population
of ANN’s, the crossover operator selects two distinct
ANN’s randomly and chooses one hidden node as a

Fig. 1. In this representation, the matrix has one input neuron, at most
three hidden neurons and one output neuron. In the top right corner,
there is information on the connection of links between nodes. In the
bottom left corner, it contains information on the weights information
of links. It only allows feed-forward links. Unlike traditional neural
networks, it allows the direct link from the input neuron and output
neuron.

crossover point. The two ANN’s exchange the connec-
tion links and the corresponding weight information of
the nodes. The mutation operator changes a connec-
tion link and the corresponding weight of a randomly
selected ANN from the population. It performs one
of two operations: Addition of a new connection and
deletion of an existing connection. The mutation oper-
ator selects an ANN from the population of ANN’s
randomly and chooses one connection link from it.
If the connection link does not exist and the connec-
tion entry of the ANN matrix is ‘0’, a new connection
link is created. It adds the new connection link to the
ANN with random weights. Otherwise, if the connec-
tion link already exists, it removes the connection link
and weight information.

3.1.2. NEAT
NEAT was proposed by Stanley [16] in 2002. It has

been applied to many real-world problems and there
have been several variants of the standard NEAT. It
starts from minimal solutions which have only links
from input to output neurons (zero hidden nodes).
Chromosomes are linear representations of network
connectivity (Fig. 3). Each link contains in-node ID,
out-node ID, weight of the connection, an enable bit,
and an innovation ID which is historical marker iden-
tifying the original historical ancestor of each link.
It allows easy line up of corresponding genes when
two chromosomes crossover during evolution. During
crossover, the links in both chromosomes with the same

Fig. 2. Among the hidden nodes, one hidden node is randomly
selected as a crossover point (in this example, H2). The hidden nodes
that have larger index than the point are considered for crossover. In
this example, H2 and H3 are considered and the links related to them
are exchanged.

K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures 87

Fig. 3. NEAT maintains two separate lists of nodes and link information. In nodes, it has node ID and the type of nodes (input, output, and hidden).
For each link, it contains the in-node ID, out-node ID, weight, on/off of the link, and the innovation ID.

innovation numbers are lined up. In NEAT, there are
three different mutation operators (weight change, add
connection, and add node).

3.2. Speciation algorithms

3.2.1. Fitness sharing
Fitness sharing decreases the fitness of individuals

in a densely populated area and shares the fitness with
other neural networks (Fig. 4). Therefore, it helps the

genetic algorithm search a broad solution space and it
generates more diverse neural networks. Given that fi
is the fitness of an individual and sh(dij) is a sharing
function, the shared fitness fsi is computed as follows:

fsi = fi∑population size

j=1
sh(dij)

The sharing function sh(dij) is computed using the
distance value dij which means the difference of indi-
viduals i and j as follows:

// σ : Sharing radius
// MAX_GEN: The maximum number of generation
// POP_SIZE: A population size
// Distance (NN1, NN2): Return distance between two neural networks
// Evaluation (): Return a fitness of neural networks in a population

Initialization (); // Create neural networks randomly
 // Set the sharing radius as the half of the average distance of the initial
population

FOR (gen=0; gen < MAX_GEN; gen++) {
 Evaluation ();

 FOR (i=0; i < POP_SIZE; i++) {
 sh=0;
 FOR (j=0; j < POP_SIZE; j++)
 IF (Distance(NNi,NNj) < σ) sh+=(1- Distance(NNi,NNj)/σ);
 fitness[NNi]/=sh;
 }

 Selection (); // Roulette-Wheel selection
 Crossover (); // 1-point uniform crossover
 Mutation (); // If no link, a random weight is assigned. If link, delete it.
 Elitist ();
}

Fig. 4. Pseudo code for fitness sharing.

88 K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures

sh(dij) =
⎧⎨
⎩ 1 − dij

σs

, 0 ≤ dij < σs

0, dij ≥ σs

Here, �s means the sharing radius. If the difference
of the individuals is larger than �s, they do not share the
fitness. Only the individuals who have smaller distance
values than �s can share the fitness.

3.2.2. Deterministic crowding GA
Unlike fitness sharing, there is no additional param-

eter for the deterministic crowding genetic algorithm.
It is based on the competition between parents and
offspring paired to maximize the similarity. Among
two similar neural networks, one with better fitness
survives to the next generation. Figure 5 summarizes
a pseudo code for the deterministic crowding algo-

rithm. It uses the same crossover and mutation as fitness
sharing.

3.3. Distance measures

In this subsection, we survey methods for distance
measure which evaluate similarity between two neu-
ral networks. Distance measure methods consist of two
part, Architectural distance measures and Behavioral
distance measures.

Notation

NI: The number of input neurons
NH: The maximum number of hidden neurons
NO: The number of output neurons
N: The number of total neurons (N = NI + NH + NO)

// Shuffling (): Shuffle the population
// Survive (): Copy to the population of the next generation

Initialization (); // Create neural networks randomly

FOR (gen=0; gen < MAX_GEN; gen++) {
 Evaluation ();

 Shuffling ();
 FOR (i=0; i < POP_SIZE; i+=2) {

 P1=NNi; // parent 1
 P2=NNi+1; // parent 2
 (C1,C2)=crossover(NNi, NNi+1);
 C1=mutation(C1); C2=mutation(C2); // offspring

 IF(Distance(P1,C1)+Distance(P2,C2)<Distance(P1,C2)+Distance(P2,C1)){
 IF(fitness(P1)<fitness(C1)) Survive(C1); ELSE Survive(P1);
 IF(fitness(P2)<fitness(C2)) Survive(C2); ELSE Survive(P2);
 }
 ELSE{
 IF(fitness(P1)<fitness(C2)) Survive(C2); ELSE Survive(P1);
 IF(fitness(P2)<fitness(C1)) Survive(C1); ELSE Survive(P2);
 }

 }

}

Fig. 5. Pseudo code for deterministic crowding genetic algorithm.

K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures 89

Iijk, Hijk, Oijk: jth input, hidden, and output neuron of
ith neural network for kth sample

ϕ (): Output of a neuron
M: The number of training samples
Vi: A chromosome of ith neural network (weight

information of matrix is converted to 1-D vector)
L: A length of the 1-D vector (L = (N2 − N)/2)

3.3.1. Architectural distance measures
3.3.1.1. Euclidean distance. This is a simple Eucli-
dean distance of two chromosome vectors.

d(a, b) =
√√√√ L∑

i=1

(Vai − Vbi)2

3.3.1.2. Hamming distance. This counts only the sim-
ilarity and dissimilarity of architecture. If only one of
the networks has a link, this is counted.

d(a, b) =
L∑

i=1

h(Vai, Vbi)

h(x, y) =

{
1 Vai = 0 and Vbi /= 0, Vai /= 0 and Vbi = 0

0 otherwise

}

3.3.1.3. Compatibility. Links that do not match
between two neural networks are either disjoint or
excess. If the link’s innovation ID is larger than the other
parent’s maximum innovation ID, it’s excess. Other-
wise, it’s disjoint. Compatibility of different structures
in NEAT was defined as a simple linear combination of
excess E and disjoint D links and the average weight
differences of matching links W [16].

d(a, b) = c1E

N
+ c2D

N
+ c3W

3.3.1.4. NeuroEdit. Sallam et al. [14] proposed a new
distance measure for NEAT based on EDIT distance.

3.3.2. Behavioral distance measures
3.3.2.1. Euclidean output. This calculates the Eucli-
dean distance of outputs from output neurons.

d(a, b) =
√√√√ M∑

k=1

NO∑
j=1

(Oajk − Objk)2

3.3.2.2. Total Euclidean output. Usually, the outputs
from output neurons are used in the behavioral dis-
tance but we propose to use outputs from all neurons
(input/hidden/output neurons).

d(a, b) =

√√√√√ M∑
k=1

⎛
⎝ NI∑

j=1

(Iajk − Ibjk)2 +
NH∑
j=1

(Hajk − Hbjk)2 +
NO∑
j=1

(Oajk − Objk)2

⎞
⎠

3.3.2.3. Average output. This is the Euclidean distance
of average outputs from each output neuron.

d(a, b) =
√√√√ NO∑

j=1

(Oaj − Obj)
2

Oaj = 1

M

M∑
k=1

Oajk Obj = 1

M

M∑
k=1

Objk

3.3.2.4. Kullback-Leibler entropy. This is proposed in
[1]. It is called as relative entropy and modified to be
used as a distance measure.

d(a, b) = 1

2

M∑
k=1

NO∑
j=1

(
Oajk log

Oajk

Objk

+ Objk log
Objk

Oajk

)

4. Experimental results

The purpose of this experimentation is to see the
effect of distance measures on the performance of ENN
systems. We adopted five datasets from UCI machine
learning repository. For the five datasets, we evolved
neural classifiers for all the combination of speciation
algorithms and distance measures. For the matrix-
based representation, we adopted six distance measures
(Euclidean Distance, Hamming Distance, Euclidean
Output, Total Euclidean Output, Average Output, and
Kullback Leibler Entropy). For NEAT, there are two
distance measures used (Compatibility and NeuroEdit).
For each distance measure, we repeated the evolution
10 times to get the average accuracy.

90 K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures
K

ul
lb

ac
k

Le
ib

le
r

E
nt

ro
py

Total Euclidean Output

Euclidean Output Total Euclidean Output

Euclidean OutputEuclidean Output

Euclidean Distance Euclidean Distance

Euclidean DistanceEuclidean Distance

Average Output

K
ul

lb
ac

k
Le

ib
le

r
E

nt
ro

py
A

ve
ra

ge
 O

ut
pu

t
A

ve
ra

ge
 O

ut
pu

t
K

ul
lb

ac
k

Le
ib

le
r

E
nt

ro
py

To
ta

l E
uc

lid
ea

n
O

ut
pu

t

K
ul

lb
ac

k
Le

ib
le

r
E

nt
ro

py
To

ta
l E

uc
lid

ea
n

O
ut

pu
t

A
ve

ra
ge

 O
ut

pu
t

E
uc

lid
ea

n
O

ut
pu

t

Fig. 6. Correlation analysis of distance measures for matrix-based representation (Australian Credit Card Dataset).

K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures 91

NeuroEdit

C
om

pa
tib

ili
ty

Fig. 7. Correlation analysis for NEAT distance measures (Australian
Credit Card Dataset).

First of all, we did correlation analysis of distance
measures to see the relationships among them. In this
work, we used the population size as 100 for the two rep-
resentations. For the matrix-based representation, we
initially generated 100 random neural networks fully
connected and calculated the distance values for the
all pairs (100 × 99) with five distance measures. We
excluded Hamming Distance because they recorded
zero value for all pairs. For NEAT, we did the correlation
analysis for the 100 neural networks at 100 generations
because the NEAT starts from the minimal structure.

Figure 6 shows the correlation analysis of the dis-
tance measures for the matrix-based representation. It
is interesting that there is linear relationship between
Euclidean Output and Average Output. There is posi-
tive correlation between the Euclidean Output and the
Kullback Leibler Entropy but it’s not linear. Figure 7
shows the same analysis for the two distance measures
of the NEAT. It shows that there is positive correlation
between the two distance measures.

The second experiment is to test the classification
accuracy of the evolved neural classifiers with differ-
ent distance measures. Table 3 summarizes the datasets
used in this experimentation. We chose binary and

Table 3
Summary of datasets used

Name No of classes No of attributes No of samples

Australian credit card 2 14 690
Breast cancer 2 10 699
Diabetes 2 8 768
Glass 7 10 214
Soybean – large 19 35 307

multi-class classification datasets. The whole data is
separated to training (2/3) and test (1/3) randomly. The
fitness function of the evolution is the accuracy on the
training dataset. The final accuracy was measured on
the test dataset.

Table 4 summarizes the performance of ENN-based
classification systems with different distance measures.
Although there were no dominant distance measures,
most of the best accuracy was achieved from the behav-
ioral distance measures. EO and TEO show relatively
good performance for all datasets. Although the behav-
ioral distance measures show improved performance,
they required more computational resource than the
architectural distance. The computational complexity
of the behavioral distance measures is proportional to
the number of training samples. In case of data mining
with thousands of data, it is better to choose architec-
tural distance measure to minimize computational cost.
If not, we need additional mechanism to approximate
the behavioral distance measure from sampled train-
ing data. For NEAT, the NeuroEdit outperforms the
compatibility distance measures for most of datasets.

5. Conclusions

In this paper, we proposed comprehensive test of
distance measures for evolutionary neural networks
for different representations. Correlation analysis was
used to see the relationships among distance measures

Table 4a
Performance comparison of distance measures (bold means the best accuracy for the dataset). (a) Matrix-based representation

EU HA EO TEO AO KL

Australian credit FS 80.33 ± 4.7 84.4 ± 1.8 84.00 ± 1.4 83.90 ± 1.4 83.90 ± 1.9 83.90 ± 2.0
DCGA 83.27 ± 1.7 83.13 ± 2.1 83.27 ± 1.7 83.41 ± 1.6 83.26 ± 1.3 83.89 ± 1.6

Breast cancer FS 98.63 ± 0.38 98.49 ± 0.42 98.54 ± 0.68 98.54 ± 0.3 98.54 ± 0.7 98.63 ± 0.38
DCGA 98.50 ± 0.38 98.44 ± 0.29 98.39 ± 0.31 98.83 ± 0.45 98.54 ± 0.38 98.39 ± 0.22

Diabetes FS 70.99 ± 4.9 77.23 ± 2.2 74.76 ± 2.4 74.93 ± 2.6 72.16 ± 4.0 74.37 ± 3.3
DCGA 76.49 ± 1.6 76.45 ± 1.1 77.01 ± 1.2 77.05 ± 1.9 77.23 ± 1.3 77.70 ± 2.0

Glass FS 44.15 ± 5.3 49.08 ± 7.3 44.9 ± 6.8 40.77 ± 6.2 42.62 ± 6.8 46.92 ± 6.8
DCGA 52.00 ± 7.2 53.23 ± 6.7 56.92 ± 3.6 52.31 ± 6.2 53.54 ± 4.5 54.15 ± 6.1

Soybean FS 32.47 ± 5.5 34.84 ± 3.2 36.67 ± 2.5 33.66 ± 4.7 36.32 ± 3.2 31.93 ± 4.3
DCGA 33.66 ± 2.4 31.61 ± 2.6 32.26 ± 3.6 32.80 ± 3.9 34.09 ± 3.7 33.23 ± 8.4

92 K.-J. Kim et al. / Correlation analysis and performance evaluation of distance measures

Table 4b
Performance comparison of distance measures (bold means the best

accuracy for the dataset). (b) NEAT

NeuroEdit Compatibility

Australian Credit 85.77 ± 0.4 84.56 ± 1.2
Breast Cancer 98.88 ± 0.3 98.63 ± 0.6
Diabetes 77.88 ± 0.6 75.76 ± 4.2
Glass 58.92 ± 4.9 51.23 ± 7.0
Soybean 32.58 ± 1.9 32.80 ± 1.6

and we found that positive linear and non-linear rela-
tionships among several distance measures. Some of
them have no correlation at all but several measures
have strong correlation. Using UCI machine learning
datasets, we tested the superiority of distance measures
for pattern recognition problems. It showed that the
behavioral distance measures outperform the architec-
tural one for most of datasets. However, they required
much more computational resource than the architec-
tural distance measure. It is recommended to consider
tradeoff between the performance improvement and the
increasing of computational cost. For data mining prob-
lems with thousands of data, it is not a good choice to use
the behavioral distance measures directly without sam-
pling approaches. For NEAT, the NeuroEdit showed
better accuracy than compatibility.

Acknowledgements

This research was supported by Basic Science
Research Program and the Original Technology
Research Program for Brain Science through the
National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technol-
ogy (2010-0012876) (2010-0018948). This paper is an
extended version of the paper published in International
Conference on Neural Information Processing 2009.

References

[1] J.-H. Ahn and S.-B. Cho, Speciated neural networks evolved
with fitness sharing technique, Proceedings of Congress on
Evolutionary Computation, 2001, pp. 390–396.

[2] A. Frank and A. Asuncion, UCI Machine Learning Repos-
itory [http://archive.ics.uci.edu/ml], School of Information

and Computer Science, University of California, Irvine, CA,
2010.

[3] N. Garcia-Pedrajas, C. Hervas-Martinez and D. Ortiz-Boyer,
Cooperative coevolution of artificial neural network ensembles
for pattern classification, IEEE Transactions on Evolutionary
Computation 9(3) (2005), 271–302.

[4] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, 1989.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, 1999.

[6] S.-C. Jung and B.-R. Moon, Central point crossover for neuro-
genetic hybrids, Lecture Notes in Computer Science 3102
(2004), 1292–1303.

[7] V. Khare and X. Yao, Artificial speciation of neural network
ensembles, Proceedings of the 2002 UK Workshop on Compu-
tational Intelligence (2002), 96–103.

[8] K.-J. Kim and S.-B. Cho, Evaluation of distance measures for
speciated evolutionary neural networks in pattern classification
problems, Lecture Notes in Computer Science 5864 (2009),
630–637.

[9] K.-J. Kim and S.-B. Cho, Systematically incorporating
domain-specific knowledge into evolutionary speciated check-
ers players, IEEE Transactions on Evolutionary Computation
9(6) (2005), 615–627.

[10] K.-J. Kim and S.-B. Cho, Evolutionary ensemble of diverse
artificial neural networks using speciation, Neurocomputing
71 (2008), 1604–1618.

[11] S.W. Mahfoud, Niching methods, Evolutionary Computation
2: Advanced Algorithms and Operators, Institute of Physics
Publishing, 2000, pp. 87–92.

[12] A. Rogers and A. Prugel-Bennett, Genetic drift in genetic algo-
rithm selection schemes, IEEE Transactions on Evolutionary
Computation 3(4) (1999), 298–303.

[13] H. Sallam, C.S. Regazzoni, I. Talkhan and A. Atiya, Evolving
neural networks ensembles NNEs, 2008 IAPR Workshop on
Cognitive Information Processing (2008), 142–147.

[14] H. Sallam, C.S. Regazzoni, I. Talkhan and A. Atiya, Measuring
the genotype diversity of evolvable neural networks, The 6th
International Conference on Informatics and Systems – Paral-
lel and Distributed Computing and Their Applications 2008,
pp. 38–43.

[15] B. Sareni and L. Krahenbuhl, Fitness sharing and niching
methods revisited, IEEE Transactions on Evolutionary Com-
putation 2(3) (1998), 97–106.

[16] K.O. Stanley and R. Miikkulainen, Evolving neural networks
through augmenting topologies, Evolutionary Computation
10(2) (2002), 99–127.

[17] K.O. Stanley, Efficient Evolution of Neural Networks through
Complexification, Ph.D. Dissertation, The University of Texas
at Austin, 2004.

[18] L. Trujillo, G. Olague, E. Lutton and F.F. de Vega, Discovering
several robot behaviors through speciation, Lecture Notes in
Computer Science 4974 (2008), 164–174.

[19] X. Yao, Evolving artificial neural networks, Proceedings of the
IEEE 87(9) (1999), 1423–1447.

http://archive.ics.uci.edu/ml

